Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program)

نویسندگان

  • Olga V. Leontieva
  • Zoya N. Demidenko
  • Mikhail V. Blagosklonny
چکیده

In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual mTORC1/C2 inhibitors: gerosuppressors with potential anti-aging effect

Over the past decade, our understanding of the molecular and cellular mechanisms presiding over cellular and tissue decline with aging has greatly advanced. Classical hallmarks of aging cell include increasing levels of reactive oxygen species, DNA damage and senescence entry, which disrupt tissue architecture and function. Tissue dysfunction with aging has been shown to correlate with a cellul...

متن کامل

Gerosuppression by pan-mTOR inhibitors

Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others demonstrated that pan-mTOR inhibitors, known also as dual mTORC1/C2 inhibitors, suppress senescen...

متن کامل

Hypoxia suppresses conversion from proliferative arrest to cellular senescence.

Unlike reversible quiescence, cellular senescence is characterized by a large flat cell morphology, β-gal staining and irreversible loss of regenerative (i.e., replicative) potential. Conversion from proliferative arrest to irreversible senescence, a process named geroconversion, is driven in part by growth-promoting pathways such as mammalian target of rapamycin (mTOR). During cell cycle arres...

متن کامل

Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging

Cell cycle arrest is not yet senescence. When the cell cycle is arrested, an inappropriate growth-promotion converts an arrest into senescence (geroconversion). By inhibiting the growth-promoting mTOR pathway, rapamycin decelerates geroconversion of the arrested cells. And as a striking example, while causing arrest, p53 may decelerate or suppress geroconversion (in some conditions). Here I dis...

متن کامل

While reinforcing cell cycle arrest, rapamycin and Torins suppress senescence in UVA-irradiated fibroblasts

Sunlight predisposes to skin cancer and melanomas. Ultraviolet A (UVA), a long wave component of sunlight, can reach dermal fibroblasts. Here we studied UVA-induced senescence in human fibroblasts in vitro. It is known that senescence occurs, when cell cycle is arrested, but mTOR is still active, thus converting arrest to senescence (geroconversion). We showed that, while arresting cell cycle, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015